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 Laser Diode to Single-Mode Fiber Coupling Efficiency:
Part 1 - Butt Coupling

1 Introduction
For fiber-optic transmitters, it is generally desirable
to utilize the optical power generated by the laser
diode as efficiently as possible. In practice, more
than half of this power may be lost at the interface
between a laser diode and a single-mode optical
fiber. The purpose of this application note is to
analyze the efficiency of butt coupling. Other
coupling methods will be addressed in future
application notes.

Butt coupling is the most basic method of coupling
the optical output from a laser diode into an optical
fiber. This simply consists of placing the cleaved
end of the fiber as close as possible to the output
aperture of the laser diode. In addition to butt
coupling, there are other (more complex) methods of
coupling, but these are outside the scope of this
application note.

There are many types of optical fiber in use today,
including multimode, graded-index, dispersion-
shifted, etc., and each has advantages for specific
applications. For purposes of this analysis, we will
use the published characteristics of Corning SMF-28
step-index fiber, which is one of the most widely
used single-mode optical fibers. For this fiber, the
numerical aperture (equivalent to the acceptance
angle in units of radians) is 0.14, the core index of
refraction is 1.650, the cladding index of refraction
is 1.644, the core diameter is 8.2µm, and the
cladding diameter is 125µm.

2 Reflection and Refraction at the
Air-Glass Boundary

When light is incident on the boundary between one
medium and another, part of it will be reflected away
from the boundary and the rest will be transmitted
across the boundary and into the new medium. The
light that is transmitted into the new medium will
generally experience a change in direction due to
refraction. This is illustrated in Figure 1.

The incident, reflected, and transmitted light
components shown in Figure 1 all travel in the same
two-dimensional plane. The angle of incidence, θi,
and the angle of reflection, θr, are equal. The angle
of the transmitted light, θt, relative to the normal at
the boundary, is related to the angle of incidence by
Snell’s law:

     2211 sinsin θθ nn = (1)

where n1 and n2 are the indices of refraction for the
incident and transmitting media, respectively, θ1 = θi
= θr, and θ2 = θt.

The fraction of the incident light amplitude that is
reflected can be calculated using the Fresnel
equations:
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where RTE and RTM represent the amplitude
reflection coefficients (i.e., the ratios of the reflected
to the incident amplitudes) for the transverse electric
and transverse magnetic polarizations of the incident

8.2µm 125µm

Cladding
n = 1.644

Core
n = 1.65

Incident

Reflected

Transmitted

Air
n = 1.0

Figure 1. Light incident on an air-glass boundary
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light relative to the plane of the boundary. The
amplitude reflection coefficients for an air-glass
boundary are plotted in Figure 2.

When coupling light into the single-mode optical
fiber illustrated in Figure 1, the incident angles of
interest are limited to θi < 10° (for reasons that will
be discussed in the next section). For this range of
angles the reflection is approximately constant and
independent of polarization. From equations (1), (2),
and (3) we can calculate RTE ≈ RTM ≈ 0.24 for θi <
10°.

Since we are interested in the power of the reflected
light (instead of the amplitude) we can calculate the
power reflection coefficient for θi < 10° as follows:

     0576.024.0 222 ====Γ TMTE RR (4)

where Γ is the power reflection coefficient and
represents the ratio of the reflected power to the
incident power. The transmitted power is just the
difference between the incident power and the
reflected power, so, for the boundary in Figure 1,
approximately 94% of the incident power is
transmitted across the air-glass boundary.

3 Total Internal Reflection
For the 94% of the light power that is transmitted
across the air-glass boundary, there is yet another
boundary that is encountered. This is the boundary
between the core and the cladding of the optical
fiber. The equations of the previous section apply
equally to the core-cladding boundary, but with
different indices of refraction. The index of

refraction for the incident medium (the core) is 1.65
versus 1.644 on the other side of the boundary (the
cladding). This is illustrated in Figure 3.

Since the cladding index of refraction is greater than
the core index of refraction, the angle of transmitted
light (θt) is greater than the angle of the incident
light (θi). As the incident angle is increased, there is
a point where the transmitted angle is 90° and no
light is transmitted into the cladding. The incident
angle that results in a transmitted angle of 90° is
called the critical angle. The critical angle can be
computed mathematically using equation (1) (Snell’s
law) as follows:
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where θc is the critical angle. For n1 = 1.65 and n2 =
1.644, equation (5) gives a critical angle of 85.1°.
The power reflection coefficients for these indices of
refraction can be calculated using the Fresnel
equations [(2) and (3)]. These reflection coefficients
are plotted in Figure 4.

From Figure 4 we can see that for incident angles
greater than the critical angle 100% of the incident
light is reflected, resulting in a condition called total
internal reflection. Since the reflected angle is equal
to the incident angle, the propagating light will
repeatedly bounce back and forth between the core-
cladding boundaries with the same angles. The
process is repeated indefinitely, and the light
propagates unimpeded along the length of the fiber.
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Figure 2. Power reflected versus incident angle
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For incident angles less than the critical angle, some
of the light is lost through transmission into the
cladding and the rest is reflected back into the core
of the fiber. The process is repeated, but each time
the light hits the core-cladding boundary a fraction
of the power is lost. Thus, for incident angles less
than the critical angle, light propagates only a short
distance in the core before it is totally lost to the
cladding.

When coupling light into the optical fiber, we are
generally interested only in the light that propagates,
i.e. light that strikes the core-cladding boundary at
an angle greater than the critical angle. Working
back to the air-glass boundary, we see that the angle
of the light entering the glass relative to the normal
at the boundary (i.e., the angle labeled θt in Figure
1), must be less than 90° - θc for total internal
reflection. Application of Snell’s law to this
condition yields the following equation for the
acceptance angle of the fiber:

     )]90sin([sin 1
ccoreA n θθ −°= −  (6)

Using this equation for the example fiber gives an
acceptance angle of 8.1°. (Note that the numerical
aperture (NA) of the fiber is equivalent to the
acceptance angle in units of radians.) An acceptance
angle of 8.1° means that light striking the air-glass
boundary at the core of the fiber will only propagate
if the angle of incidence is less than 8.1° (0.14
radians).

4 Angular Divergence of the
Laser Diode Output Power

In order to determine how much of the light output
power from a laser diode will couple into the optical
fiber, we need to know the angular divergence of its
output power. This can be determined from the
dimensions of the output aperture of the laser
through the use of Fresnel/Fraunhofer diffraction
theory1 and Fourier optics2.

For typical laser diodes, the active region (resonant
cavity) has dimensions of 100-400µm in length, 10-
20µm in width, and 0.1-0.3µm in height3,4. For
example purposes, we will assume the output
aperture is 10µm wide (in the horizontal or x-
dimension) and 0.2µm high (in the vertical or y-
dimension).

Fraunhofer diffraction theory is based on specific
approximations that result in a convenient Fourier
transform technique for determining the effect of an
aperture on a beam of light. The Fraunhofer
approximation becomes increasingly valid1 as the
distance from the aperture becomes greater than five
to ten times the square of the maximum radius of the
aperture divided by the wavelength (this is called the
Fraunhofer distance). To use this technique we
compute the product of the output aperture and the
spatial intensity distribution of the light beam just
inside the aperture. We then take the Fourier
transform of the product and square the result5. This
procedure can be written mathematically as:

     [ ] 2),b(),a(FT),P( yxyxff yx ×= (7)

where, P(fx,fy) is the angular distribution of the
output power as a function of the spatial frequencies
fx and fy, FT[ ] signifies the Fourier transform, a(x,y)
is the aperture function, and b(x,y) is the spatial
intensity distribution of the light beam.

The light output of a laser can be modeled as a
Gaussian beam. For a Gaussian beam, the angular
intensity profile can be represented by the Gaussian
function exp[-π(x/wx)2]exp[-π(y/wy)2], where w
represents the aperture width in the x and y
dimensions. This function has two unique properties:
it’s Fourier transform is also a Gaussian function;
and a Gaussian beam maintains the same angular
intensity profile in the Fresnel and Fraunhofer

Figure 4. Power reflected versus incident angle
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regions (near and far field)1. Using the properties of
the Gaussian beam output of the laser diode along
with equation (7), we can calculate the angular
intensity profiles of the laser output power in the x-
axis and y-axis.

Figures 5 and 6 are plots of the laser diode output
power as a function of the divergence angle. These
figures were generated using the Fourier transform
technique described above. The mathematical
derivation of these figures is detailed in the appendix
at the end of this application note. The key point to
observe is the inverse relationship between the
angular divergence and the aperture dimensions. For
example, the larger horizontal dimension results in a
tighter angular intensity profile (Figure 5) while the
smaller vertical dimension results in a wider angular
intensity profile (Figure 6).

Recalling that the acceptance angle for the example
optical fiber is 8.1°, we can see from Figures 5 and 6
that a butt-coupled optical fiber will accept most of
the laser output power in the horizontal direction,
but only a fraction of the power in the vertical
dimension. We can calculate a reasonable estimate
of the output power that will be accepted, by
integrating the two angular intensity patterns over
the range of acceptance angles and computing the
product of the results, i.e.
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where PA is the accepted power and I(θ) represents
the angular intensity pattern. Application of equation
(8) to the angular intensity patterns of Figures 5 and
6 (using numerical integration methods) results in PA

≈ 31% of the total output power.

5 Total Butt-Coupling Losses
For the example analysis of this application note, we
have calculated a reflection loss of 5.8% and an
acceptance angle loss of 69%. Combining these
losses, we can calculate the total fiber-coupled
power as (1 – 0.0576)(1 – 0.69) = 29% of the total
laser output power.

In addition to the reflection and acceptance angle
losses, there are a number of other possible losses
that have not been addressed. These include losses
due to: (1) imperfect cleaving of the optical fiber, (2)
misalignment of the optical fiber, (3) laser output
aperture dimensions larger than the fiber core
(mismatch loss), and (4) intentional angling of the
face of the optical fiber to reduce back reflections
into the laser diode. All of these losses typically
occur to some extent with butt coupling and will
therefore reduce the fiber-coupled power beyond the
figure calculated above. For example, some
references report practical butt-coupling efficiencies
as low as 10% 6.

6 Conclusions
We have demonstrated through analysis that the
typical efficiency of butt coupling will be less than
29%. Clearly it is desirable to improve on this
figure. There are many techniques that can be used
to realize an improvement, including: (1) anti-
reflection coatings and/or index-matching gels to
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reduce reflection losses, (2) improved alignment
techniques, (3) lensed optical fibers, where the end
of the fiber is specially shaped to improve the
acceptance angle, and (4) lens systems that reshape
the laser output for a better match to the fiber core.
Using these and other techniques, coupling
efficiencies as high as 87% have been reported 7.
Unfortunately these techniques can be complicated
and expensive. Economical assembly to support
competitive pricing may rule out all but the simplest
methods. Thus, in many cases, butt coupling may be
the only feasible method.

Appendix:  Mathematical Details
for Calculating the Angular
Divergence of the Laser Output
Power
For the maximum radius of the example aperture
(5µm) and a wavelength of 1.31µm, the Fraunhofer
distance is approximately 95 to 190µm. This means
that equation (7) begins to be a good approximation
at a distance of 95µm, and becomes a very accurate
approximation for distances greater than 190µm. In
practical butt-coupling configurations, the cleaved
end of the optical fiber is placed as close as possible
to the output aperture of the laser diode, which is
typically 10 to 20µm. Even though the distance
between the aperture and the fiber does not meet the
criteria for the Fraunhofer approximation, the
criteria will be met after the light propagates a short
distance down the fiber. Also, if we assume the laser
output is a Gaussian beam then the Fraunhofer
distance is irrelevant, since a Gaussian beam has the
unique property that it maintains the same shape at
all propagation distances1. Thus, for practical
purposes, we can assume that equation (7) is valid
for a butt-coupled fiber.

We can write an expression for the two dimensional
output aperture function in terms of the rectangular
function rect(x/w). This function has been defined to
have a value of zero for |x/w| > 0.5, 0.5 for |x/w| =
0.5, and 1 for |x/w| < 0.5. We apply this function to
the aperture by letting zero represent no light
transmission and one represent full light
transmission. Note that the rect(x/w) function is

centered at x = 0 and it’s width is equal to w. Using
this function, we can write the following expression
for the output aperture:
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where λ is the wavelength of the light and d is the
distance from the aperture.

The spatial distribution of the emitted laser light
depends on the geometry of the resonator and on the
shape of the active medium. If we assume that the
mirrors at the ends of the resonant cavity are planar
and perfectly parallel, then the laser output can be
modeled as a plane wave, which we can express as
b(x,y) = 1. Because of the difficulty in achieving
sufficient alignment accuracy with planar mirrors,
many laser designs use spherical mirrors. In this
case, the laser output takes the form of a Gaussian
beam8, which we can express as b(x,y) =
Gauss(x/wx,y/wy) = exp[-π(x/wx)2]exp[-π(y/wy)2].
Regardless of whether we model the laser output as
a plane wave or a Gaussian beam, the calculated
angular divergence of the output power resulting
from equation (7) will be approximately the same in
the region of interest for the fiber coupling analysis.
To illustrate this point, we will use equation (7) to
calculate the result for both a plane wave and a
Gaussian beam output.

For a plane wave, equation (7) can be solved as
follows:
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where sinc(f) is defined as sin(πf)/πf.
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For a Gaussian beam, equation (7) can be solved as:
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Note that the result in equation (11) is obtained by
observing that the rectangle function almost entirely
contains the Gaussian function, resulting in a
slightly truncated Gaussian function that closely
approximates the original.

Figure 7 is a plot of both the sinc2( ) function and the
Gauss2( ) functions. The plots are normalized to a
spatial frequency of λd/w, where λ is the wavelength
of the light, d is the distance from the aperture, and
w is the width of the aperture. In the region between
±λd/w the results are similar for both functions. For
purposes of this analysis, we will use the Gauss( )
function from this point forward in order to be
consistent with results published in the literature9.

Figures 5 and 6 are plots of the angular output
intensity patterns along the x and y axis as calculated
in equation (11). The divergence angles of the

intensity patterns are calculated by observing that
the radial expansion of the intensity pattern divided
by the propagation distance is equivalent to the
tangent (in radians) of the divergence angle. For
example, for the λd/w point on the intesity pattern
the propagation distance is d, and therefore

     
wdw

d λλθ =×= 1tan            (12)

where θ is the angle of divergence.
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